9 research outputs found

    Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma

    Get PDF
    Small non-coding RNAs, in particular microRNAs(miRNAs), regulate fine-tuning of gene expression and can act as oncogenes or tumor suppressor genes. Differential miRNA expression has been reported to be of functional relevance for tumor biology. Using next-generation sequencing, the unbiased and absolute quantification of the small RNA transcriptome is now feasible. Neuroblastoma(NB) is an embryonal tumor with highly variable clinical course. We analyzed the small RNA transcriptomes of five favorable and five unfavorable NBs using SOLiD next-generation sequencing, generating a total of >188 000 000 reads. MiRNA expression profiles obtained by deep sequencing correlated well with real-time PCR data. Cluster analysis differentiated between favorable and unfavorable NBs, and the miRNA transcriptomes of these two groups were significantly different. Oncogenic miRNAs of the miR17-92 cluster and the miR-181 family were overexpressed in unfavorable NBs. In contrast, the putative tumor suppressive microRNAs, miR-542-5p and miR-628, were expressed in favorable NBs and virtually absent in unfavorable NBs. In-depth sequence analysis revealed extensive post-transcriptional miRNA editing. Of 13 identified novel miRNAs, three were further analyzed, and expression could be confirmed in a cohort of 70 NBs

    Interlaboratory Validation of a DNA Metabarcoding Assay for Mammalian and Poultry Species to Detect Food Adulteration

    No full text
    Meat species authentication in food is most commonly based on the detection of genetic variations. Official food control laboratories frequently apply single and multiplex real-time polymerase chain reaction (PCR) assays and/or DNA arrays. However, in the near future, DNA metabarcoding, the generation of PCR products for DNA barcodes, followed by massively parallel sequencing by next generation sequencing (NGS) technologies, could be an attractive alternative. DNA metabarcoding is superior to well-established methodologies since it allows simultaneous identification of a wide variety of species not only in individual foodstuffs but even in complex mixtures. We have recently published a DNA metabarcoding assay for the identification and differentiation of 15 mammalian species and six poultry species. With the aim to harmonize analytical methods for food authentication across EU Member States, the DNA metabarcoding assay has been tested in an interlaboratory ring trial including 15 laboratories. Each laboratory analyzed 16 anonymously labelled samples (eight samples, two subsamples each), comprising six DNA extract mixtures, one DNA extract from a model sausage, and one DNA extract from maize (negative control). Evaluation of data on repeatability, reproducibility, robustness, and measurement uncertainty indicated that the DNA metabarcoding method is applicable for meat species authentication in routine analysis

    Interlaboratory Validation of a DNA Metabarcoding Assay for Mammalian and Poultry Species to Detect Food Adulteration

    No full text
    Meat species authentication in food is most commonly based on the detection of genetic variations. Official food control laboratories frequently apply single and multiplex real-time polymerase chain reaction (PCR) assays and/or DNA arrays. However, in the near future, DNA metabarcoding, the generation of PCR products for DNA barcodes, followed by massively parallel sequencing by next generation sequencing (NGS) technologies, could be an attractive alternative. DNA metabarcoding is superior to well-established methodologies since it allows simultaneous identification of a wide variety of species not only in individual foodstuffs but even in complex mixtures. We have recently published a DNA metabarcoding assay for the identification and differentiation of 15 mammalian species and six poultry species. With the aim to harmonize analytical methods for food authentication across EU Member States, the DNA metabarcoding assay has been tested in an interlaboratory ring trial including 15 laboratories. Each laboratory analyzed 16 anonymously labelled samples (eight samples, two subsamples each), comprising six DNA extract mixtures, one DNA extract from a model sausage, and one DNA extract from maize (negative control). Evaluation of data on repeatability, reproducibility, robustness, and measurement uncertainty indicated that the DNA metabarcoding method is applicable for meat species authentication in routine analysis

    A CARD10-dependent tonic signalosome activates MALT1 paracaspase and regulates IL-17/TNF-a driven keratinocyte inflammation

    No full text
    The paracaspase MALT1 (Mucosa associated lymphoid tissue lymphoma translocation protein 1) controls signaling downstream of several cell surface receptors, such as C-type lectin receptors on myeloid cells and antigen receptors on lymphocytes. Upon receptor engagement, MALT1, BCL10 (B-cell lymphoma/leukemia 10) and a CARD (Caspase recruitment domain) family member assemble into a ā€˜CBMā€™ complex, which is required to trigger MALT1 paracaspase activity and downstream transcriptional activation mechanisms (Meininger and Krappmann 2016; Rosebeck et al. 2011). Here, we found that CARD10 is highly expressed in proliferating keratinocytes and is responsible for a tonic level of paracaspase activity, driven by MALT1 isoform A. Furthermore, using the potent and selective MALT1 inhibitor MLT-827 (Bardet et al. 2018; Unterreiner et al. 2017), we reveal that MALT1 activity regulates pro-inflammatory responses downstream of IL-17/TNF-Ī±

    Accurate prediction of neuroblastoma outcome based on miRNA expression profiles

    No full text
    For neuroblastoma, the most common extracranial tumour of childhood, identification of new biomarkers and potential therapeutic targets is mandatory to improve risk stratification and survival rates. MicroRNAs are deregulated in most cancers, including neuroblastoma. In this study, we analysed 430 miRNAs in 69 neuroblastomas by stem-loop RT-qPCR. Prediction of event-free survival (EFS) with support vector machines (SVM) and actual survival times with Cox regression-based models (CASPAR) were highly accurate and were independently validated. SVM-accuracy for prediction of EFS was 88.7% (95% CI: 88.5-88.8%). For CASPAR-based predictions, 5y-EFS probability was 0.19% (95% CI: 0-38%) in the CASPAR-predicted short survival group compared with 0.78% (95%CI: 64-93%) in the CASPAR-predicted long survival group. Both classifiers were validated on an independent test set yielding accuracies of 94.74% (SVM) and 5y-EFS probabilities as 0.25 (95% CI: 0.00.55) for short versus 1 +/- 0.0 for long survival (CASPAR), respectively. Amplification of the MYCN oncogene was highly correlated with deregulation of miRNA expression. In addition, 37 miRNAs correlated with TrkA expression, a marker of excellent outcome, and 6 miRNAs further analysed in vitro were regulated upon TrkA transfection, suggesting a functional relationship. Expression of the most significant TrkA-correlated miRNA, miR-542-5p, also discriminated between local and metastatic disease and was inversely correlated with MYCN amplification and event-free survival. We conclude that neuroblastoma patient outcome prediction using miRNA expression is feasible and effective. Studies testing miRNA-based predictors in comparison to and in combination with mRNA and aCGH information should be initiated. Specific miRNAs (e.g., miR-542-5p) might be important in neuroblastoma tumour biology, and qualify as potential therapeutic targets
    corecore